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Digital Twins and Al in Biomedical Technology

« Selected examples at cell and patient level from our research
 Regulatory challenges to approve DW/AI in Biomedical Technology
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Digital twin of a cancer cell %"
Functional model of the ,electrophysiological system® of a cancer cell ¥ a.
to simulate ion channel modulation during the cell cycle &

Patient model for the prediction of the cumulative fluid balance

(CFB) in intensive care Plz]
Phenomenological model to simulate the cumulative fluid balance in a
dynamically changing fluid balance system of an individual patient

DL-based image registration in heart perfusion CT imaging
Al-based medical image registration in dynamic computed tomography

'

Al and ML in Medical Devices and Software as a MD (SaMD)
Regulatory challenges to market in the EU and worldwide

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology
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What are digital twins?

“Digital twins are in-silico models
that represent the virtual counterpart
to real physical or biological
systems and their interactions with
each other at different levels of
complexity and abstraction.”

Goal in biomedicine: Model simulations
of biological mechanisms, taking into
account their unique characteristics
(genetic & metabolic associations,
signaling pathways, physiological
mechanisms, morphology, etc).

Functional vs. phenomenological twins?

Digital model of a biological (sub)system based :
on physical equations vs. biological phenomenon 1/

based on measurements.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology
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Selected cell line:

The first digital cell twin in cancer electrophysiology

This digital model represents the bioelectric \\\\ l“mf///// p
subsystem of the cell function. No representations :.,-.
of other cellular subsystems (genomic, proteomic = . —
associations and signaling pathways, morphology). - 7 ji{i | 1][ i \\

Electrogenlc qul —

an essential influence on cell cycle proliferation.

Adenocarcinomic human
alveolar basal epithelial cells
(A549 cell line)

Widley used lung cancer cell
model

— cancer research

— drug testing

in-vivo/in-vitro = in-silico

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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The first digital cell twin in cancer electrophysiology
Cell cycle proliferation

Calcium signaling

Volume-sensitive
TRPV4
TRPM7

SOCE, SMOC:
ORAI1
ORAI3
TRPC1
STIM1
TRPC6

\ 4

depolarizatii

calcium/NFAT dependent expression of
cell-cycle regulators

Self-sufficiency in growth
signals

Growth
® signalling
e molecules

lea T (Ca.3, TRP, Orai/STIM1)
Ik T (Keal.T, Kea3.1, Kea2.3, GIRK1, K,)
lg T (CLC-3)

Limitless replicative potential
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Insensitivity to antigrowth
signals
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e.© ° .‘. ) signalling

: %

L F ® o molecules
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lea 4 (SOC, TRPC1, TRPC4)
Strengthend V,, and cell volume control
Ik T (GIRK, Kare, K2P, Ky, Kca)

le T (CLC-3)

Sustained angiogenesis

lea T (TRPCs, TRPMS)

Evasion of apoptosis

*b Apoptosis

lea 4 (SOC, CRAC, TRPM2, TRPV6, P2X)

Iva T4 (VGSC)

Prevention of cell shrinkage and V,, decay
Ik 4 (K/1.5 TASK-3)

Strengthend volume control

le T (CLC-3)

Tissue invasion and
metastasis

i ons Vm hyperpolarization &5
Consitutive: e 1 (Kol 1, KesB. ) lea T (Ca,3, TRP, Orai/STIM1)
TRPV6 lea T (Cay, TRP) Transcriptional control of VEGF e T (Kea1.1, Kea3.1, Kea2.3, GIRKT, K,)
Cav3 ) h Enhancement of telomerase activity expression la T (CLC-3)
for mitosis | e T (Ka10.1,K,11.1) Ina T (Na,<1.5 Na,1.7, ENaC, ASIC1)
|
S reorganization, change K2P:
Rel . in Ras nanoclustering, TASK3
e”f;;e- DNA synthesis activation of MAPK TREK1
RyR signaling TREK2
positive feedback relationship KCa: . ;
o a: clc: Kv:
between Ca* entry and KCa ~ KCal 1 CIC2 EAGT
" KCa3.1 CIC-3 HERG1
Membrane potential regulation
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= Rhythmic oscillation of the membrane potential V
during cell cycle progression

» Changes in membrane potential may interfere
cell cycle progression

Cell growth DNA Cell division
replication

O)

-10 mV_ _
A . A
K/\‘ : Ca* I
o’ T -
g Ca*/ AN cr gl 4K z
] + Y +
S Na Na =1
g 5
o 5
=}
O !
=AY GO phase G1 phase S phase G2 phase Mitosis
adapted from: V.R. Rao et. al, ,Voltage-Gated lon Channels in Cancer Cell Proliferation” fOutward flux #Inward flux \/‘ no ionic flux
Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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The first digital cell twin in cancer electrophysiology

The whole cell ion current model of the A549 lung adenocarcinoma
cell line
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The model includes the most
relevant functional ion channels
of the plasma membrane (K*,

Na*, ClI- and Ca?*and an
intracellular calcium description

oo O

eoe,

..v-"'.'“". - e,
[Ca*len 7%
._..-' u<.-: Buffel'cyz "

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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The first digital cell twin in cancer electrophysiology

Hidden Markov-based (HMM) models = statistical models that can be
used to describe the evolution of observable events that depend on
internal factors

S1-S4
4 voltage
$9 7 sensor domain

Example: Kv1.1 channel

1) Consideration of the protein structure: ’*”9 ;
Activation Y [ 8
- voltage-dependent msg
Inactivation domain

- fast N-type and slow C-type
- voltage-dependent

o o c1-°‘-c2‘ * (3= A= 0= s
II) Definition of the kinetic scheme:
dP x/yﬂﬂ uy™4 x/y*3 [ uyr3 x/yA2||uy”2  x/y | |uy n Hs?\
0 —
dt = Pe, (). ¢ + Piy, (). = Po (1) (d + ) Ic1 < - |C2- |C3- IC4<m— IN:L<T In2

Ideally each state corresponds to one protein conformation - in practice, Markov models are only
approximations to the actual channel states

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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The first digital cell twin in cancer electrophysiology
Hidden Markov-based (HMM) models
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[[I) Model parametrization and optimization

Fitting of parameters to experimental data using various measured
current curves from different voltage-step protocols simultaneously to
model the different kinetics of the channel (hummerical optimization,
computational load!).

Activation Deactivation N
7 [ Ag/AGCI wi oumgnal [\4]
5l — > L
T35 _
— 3. <<
- E3t 3 o
QO o
Q =
25
0r ol
. . . o o
0.1 0.35 0.6 3 O
t[s] o 3
P i 1—o-dt B-dt 0 0 0 B 2 T
Pe, ki o - dt 1—(a+p)-dt b-dt 0 0 P, »
Pojn | = 0 a-dt 1—(b+c)-dt d-di 0 « | Poys
Po, k1 0 0 c-dt 1—(d+n)-dt J-dt Boy
L Prn 0 0 0 n - dt 1—A-dt P,
Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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The first digital cell twin in cancer electrophysiology

lon channel activity during A549 cell cycle progression

Cell growth DNA replication Cell division
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A - 15mV

TRAM-34

uonezuejodiadAy

+ Membrane potential V,,

KCa3.1 negative positive C. dVin — ]
TASK-1 cells cells dt simulated

-20 mV i
GO0 phase !

Membrane potential Vm
depolarization

G1 phase . Sphase | G2phase | Mitosis

fOutward flux * Inward flux

Model simulation of human intermediate potassium channel (KCa3.1)
channel inhibition in the G1 phase leads to a strong depolarization of
V. (+15mV). This might suppress the transition from G1 to S phase and
inhibit further cell cycle progression (cell cycle arrest in G1 phase).

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology ﬂTU
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Summary

= From single ion channel to the whole cell models
= Important starting point in computational cancer electrophysiology
» Fundamental basis for advanced models supporting cancer research
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A549 .
in-silico 1.0 &
&

[1] Langthaler S, Zumpf C, Rienmiiller R, Fuchs J, Zhou R, Shrestha N, Pelzmann B, Zorn-Pauly K, Frohlich E, Weinberg S, Baumgartner C. The bioelectric
mechanisms of local calcium dynamics in cancer cell proliferation: An extension of the A549 in-silico cell model. Front Mol Biosci. 2024, 11, 1394398

[2] Langthaler S, Rienmdiiller T, Scheruebel S, Pelzmann B, Shrestha N, Zorn-Pauly K, Schreibmayer W, Koff A, Baumgartner C. A549 In-silico 1.0: A first
computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Comput Biol. 2021, 17(6), e1009091
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System theory-based patient model for predicting the
cumulative fluid balance in intensive care patients
Since fluid balance is influenced by a complex interplay of patient-, operation-

and ICU-specific factors, the prediction of fluid balance is difficult and often
inaccurate.
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A patient-individual model may enable the estimation of cumulative fluid
balance progression in a dynamically changing patient fluid balance system by
simulating the response to current fluid management.

COMPLICATIONS

INSUFFICIENT ~ OPTIMUM  EXCESSIVE

VOLUME LOAD

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology iHC|“
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System theory-based patient model for predicting the
cumulative fluid balance in intensive care patients

ouT |
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System theory-based patient model for predicting the
cumulative fluid balance in intensive care patients

FLUID INPUT
CFlI

ORAL INTAKES

GRAVITY INFUSION

BLOOD TRANSFUSION
PERFUSORS

MEDICATION

Possible trajectories of cumulative fluid
balance (CFB) in postsurgical patients

FLUID OUTPUT

CFL

BREATHING
SWEATING

'

URINE

DRAINAGES

DIALYSIS

HEMORRHAGE

|

during the four consecutive phases of
fluid therapy.

Rescue (R), Optimization (O),
Stabilization (S), Evacuation (E)

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology

Phenomenological model:
The cumulative fluid balance
(CFB) is estimated as cumulative
fluid intake (CFI) minus cumulative
losses (CFL) over ICU stay.

CFB =CFI -CFL

Ebb Flow
R O S E
R\
. 0a°°°d\
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turning 3
point U"Ue
Time since ICU admission
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System theory-based patient model for predicting the
cumulative fluid balance in intensive care patients

Control theory-based digital (transfer function P[z]) model

CFl Patient CFB

| |

H ESTIMATION :

i |

5 Yo [z] -
Upol2] ; Plzli= U [2] -_ YiolZ]
Extrapolation
I PREDICTION ‘I
Uo+atl2] YioatlZ] = PlZ] - Uygsnd2]

Overall approach to predicting the course of cumulative fluid balance (CFB) using
the cumulative fluid intake (CFIl) as the only input parameter of the model.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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ﬁ System theory-based patient model for predicting the
cumulative fluid balance in intensive care patients

Control theory-based digital (transfer function P[z]) model

A Patient CFl Data B Patient CFB Data
— Real Patient Data
¥ " }‘ A ~— Approximated Data
- —"‘V‘H' 53 — Predicted Data
2 v
Patient L
2 =
P — CFB = CFI - CFL e @
[w] G
Ecimation Prediction
Window Window
1 2 ] [ 1 2
ICU stay (days ICU stay (days,
v{dey:) ¥ v (days) Statistical Analysis
= L’ TN P RMSE
. _ [c¥rreacr -Reatcray)
l \\\\\\\\ se.linear r’ RMSE'\j N >
C Linear Approximated and D .
Extrapolated CFI Predicted CFB
> g
o e ——
g // —
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o
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Individual patient model with an estimation window 0-48 h after ICU
admission (blue), which was used to determine the transfer function P[z]
with the measured CFl and calculated CFB patient data.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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System theory-based patient model for predicting the
cumulative fluid balance in intensive care patients

Control theory-based digital (transfer function P[z]) model

* Patient-individual models (evaluated on a dataset of n = 618
cardiac intensive care patients). ' pi2)
1Z

« With an 8-h prediction time, nearly 50% of CFB predictions are
within £0.5 L, and 77% are still within the clinically acceptable
range of +1.0 L (clinically relevant).

* Model allows estimation of CFB course on a dynamically
changing patient fluid balance system by simulating the
response to the current fluid management regime, prowdlng a
useful digital tool for clinicians in daily intensive care.

Polz M, Bergmoser K, Horn M, Schérghuber M, Lozanovic Sajic J, Rienmdller T, Baumgartner C. A System Theory Based Digital Model for
Predicting the Cumulative Fluid Balance Course in Intensive Care Patients. Front Physiol. 2023, 14, 1101966.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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Biomedical Technology

Artificial Intelligence is a machine-based system that can, for a given set of human-
defined objectives, make predictions, recommendations, or decisions influencing real or
virtual environments. Artificial intelligence systems use machine- and human-based
inputs to perceive real and virtual environments; abstract such perceptions into models
through analysis in an automated manner; and use model inference to formulate options

for information or action.

Machine Learning is a set of techniques that can be used to train Al algorithms to
improve performance at a task based on data.

Some real-world examples of artificial intelligence and machine learning
technologies include:

* Animaging system that uses algorithms to give diagnostic information
for skin cancer in patients.

« A smart sensor device that estimates the probability of a heart attack.

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-
software-medical-device

TU
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How Are Artificial Intelligence and Machine Learning (Al/ML)
Transforming Medical Devices?

“Al/ML technologies have the potential to transform health care by
deriving new and important insights from the vast amount of data
generated during the delivery of health care every day.

Medical device manufacturers are using these technologies to innovate
their products to better assist health care providers and improve
patient care. One of the greatest benefits of AI/ML in software
resides in its ability to learn from real-world use and experience, and its
capability to improve its performance®.

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-
software-medical-device

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU



Deep learning based image registration in
dynamic heart perfusion CT imaging

HCE

HEALTH CARE ENGINEERS

Medical image registration seeks to find an optimal spatial
transformation that best aligns the underlying anatomical structures

Relevant for (patho)physiological interpretation of the heart function
such as the heart perfusion

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology ﬂTU
Grazm
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Deep learning based image registration in
dynamic heart perfusion CT imaging
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PER (%) =

(Myocardial PE / Aortic PE) x 100

=== Aorta

—Normal myocardium

/ \ === |schemic myocardium

A0S

Time

ECG-gated cardiac CT sequences and corresponding time-attenuation curves

CT attenuation
\

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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Deep learning based image registration in
dynamic heart perfusion CT imaging

Challenges

« Correct misalignment caused by cardiac
stressing, respiration and patient motion

 Lower contrast resolution and less
accurate anatomical landmarks

 CT values must remain unaffected

« Shorter processing time Example myocardial perfusion CT

« Tested in a clinical example

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology ﬂTU
Grazm
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Wollny et al. Janssens etal.

Registration Network

LN %
ly=¢. 1"‘ﬂ5 A
B ) N | = .
FP_"

[F= N[ N[
Ialrﬂ‘u

(a)

HEALTH CARE ENGINEERS

Cascade Flow field Flow field #!
Fy @1 2 P2 Pn "1

Medule Similarity

Iy Iy, =@oL,=(ppo-@y0o@q)oly

Recursive cascade registration network

The warped image |, is the composition of the flow field k and the moving image |, (k—1).
The final warped image |, is obtained by successively warping the moving image |, along all cascades.

S. Zhao, Y. Dong, E. |.-C. Chang, and Y. Xu, “Recursive Cascaded Networks for Unsupervised Medical Image Registration,” 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 10599-10609, Oct. 2019, doi: 10.1109/ICCV.2019.01070.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology ﬂTU
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Loss Functions

Quantify the extent of error
between predicted and actual images
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an(IfrImr P, Mc) — Lsim(lfr(p © m) +Lreg(§0)

Ley(Ip I, @, Mo, Mgy, Myy) = (2)

Lsim(lfr P ©° m) + Lcont(lfr @ oIy, Mc) + Lyent (Mgpy, My ) + Lreg (o)

Lsim ... Similarity Loss to penalize the difference in appearance between the fixed and warped image

L.o,n: ---Contrast Concentration Loss to guide the deformation of the warped image by penalizing
the alteration of contrast between the moving and the warped image

L,ent ---Ventricle Loss to measure and optimize the alignment of the right and left ventricle between the
fixed and the warped image

L,c4 ... Regularization Loss to encourage the continuity of the flow field

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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(3

Dataset and Experiments

Dataset:

From dynamic CT myocardial perfusion study (NTC 02361996)
* 118 subjects with known or suspected coronary artery disease
 Total of 944 2D sequences (30 — 40 frames)

« Data split on subject-level: 80% training and 20% validation

Experiments:
* Implemented models using 3, 5, 7, 10 cascades
* Loss functions: LCV, LC, LNC

« Compared to two iterative registration methods Wollny et al. [2] and
Janssens et al. [3]
* Qualitative and quantitative evaluation

[1]. Zhao, Y. Dong, E. I.-C. Chang, and Y. Xu, “Recursive Cascaded Networks for Unsupervised Medical Image Registration,” 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 105699-10609, Oct. 2019, doi: 10.1109/ICCV.2019.01070.

[2]G. Wollny, M. J. Ledesma-Carbayo, P. Kellman, and A. Santos, “Exploiting Quasiperiodicity in Motion Correction of Free-Breathing Myocardial Perfusion MRI,” IEEE
Trans. Med. Imaging, vol. 29, no. 8, pp. 1516-1527, Aug. 2010, doi: 10.1109/TMI.2010.2049270.

[3] G. Janssens, L. Jacques, J. Orban de Xivry, X. Geets, and B. Macq, “Diffeomorphic Registration of Images with Variable Contrast Enhancement,” International Journal of
Biomedical Imaging, vol. 2011, pp. 1-16, 2011, doi: 10.1155/2011/891585.
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LNC Wollny etal.

Sequence Registration Results

e WD B
dmade
AL

HEALTH CARE ENGINEERS

*Reference contour of fixed image Color red and que Iarge and small dlsplacements
LNC Wollny et al. Janssens et al.
LCV Lc [28] [22] [27]

Results sequence registration

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology
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Sequence Registration Results
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0.92
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13800
(1405)

Run time is measured and
averaged over 245 2D
cardiac sequences
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Clinical Example & Summary

» First deformable deep
learning-based image
registration method for

input function (1) | remi funcion 0 oput fmction g cardiac CT perfusion

data points

o0 ol |- r::::q{-::a!u!mn ,/"' "“"-.\ Imag I ng -

Patient with minor coronary artery disease
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* |ntroduced a novel loss
function that accounts for

amplitude u{s) [HU]
lise
amplitude ¥(r) [HU]

[} & 10 15 20 25 30 o 5 10 15 20

local contrast changes over
(a)" (b;' time and maintains HU
e ot . | (quantitative gray) values.

« Higher registration
performance and shorter
computational time (sec)
compared to established
methods (hours).

Ay

# = === ot .
« Excellent clinical usability.

(a) CT values time curves obtained from a ROl in the LV cavity (input function u(t))

(b) Fermi-function for deconvolution (c) measured and estimated CT values-time curves in the segmented LV myocardial wall (output function y(t)).
(d) difference in HU values over time for the unregistered images (misalignment of the myocardium over the sequence).

(e) difference in HU values over time for the registered images (aligned LV myocardium after LCV registration).

(f) calculated regional myocardial perfusion in ml/100g/min for the apical (yellow), septal (orange) and lateral wall region (red).
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Clinical Usability of AI/ML-based Methods?

(7]
14
o Table 8
=z Assessment of clinical usability in identified papers. The works of [29,43,47,60,71] were evaluated according to the two applications described in the papers (indicated by
o the symbol “*”). The acronyms in Clinical Usability stand for: Robust Candidate (RC) and Proof of Concept (PoC). The symbol “/* stands for not applicable.
=z
w Reference Dataset Data Annotation Data Learning Strategy Test Validation Clinical Usability
w Preprocessing Performance
14
< Cardiac Segmentation
o Li et al. [40] 1 2 2 3 1 2 PoC
X Jafari et al. [41] 2 1 1 3 2 2 PoC
L7 Lietal. [42] 3 3 1 3 2 2 RC .
< Lietal [43]* 3 3 1 3 2 2 RC N t | f th
w savioli et al. [44] 2 1 1 3 3 2 PoC O a S I n g e O n e O e
x Yan et al. [45] 3 3 2 3 2 2 RC
Punithakumar et al. [46] 1 2 2 3 1 2 PoC H d
. : : : : reviewed papers was
Myronenko et al. [45] 1 2 1 3 2 2 PoC
LV Quantification and Cardiac Phase Detection " 13 . . 1]
Dezaki et al. [49] 2 2 1 3 1 2 PoC | f d | I I |
ity 2 : : 3 : - pec classitied as a Cilinical leve
Lietal. [43]* 2 3 2 3 2 2 RC
Xue et al. [26] 3 3 1 3 2 2 RC t d
Debus & Ferrante [20] 2 3 1 3 2 2 RC S u y-
Cardi lar Disease
Tanno et al. [52] 2 2 1 3 2 2 RC
Isensee et al. [53] 2 1 1 3 2 2 PoC
Zheng et al. [54] 2 1 2 3 2 2 PoC
Chen et al. [20] 2 2 2 3 2 2 RC 0 .
Xuetal. [31] 2 2 2 2 2 2 Re AI t 39 / f th rt I
Dol ] - : 2 : g 2 2 MOS 00 e articies
Zhang et al. [53] 2 2 2 3 3 2 RC . «“
Bello et al. [59] 2 3 2 3 1 1 PoC h d b t
Cardiac Motion Tracking and Cardiac Strain Analysis a C I eve a ro u S
Lu et al. [29] (synthetic)* 1 3 1 2 2 2 PoC . ”
Lu et al. [29] (canine)* 1 3 2 2 1 2 PoC
hdad oo 13 : . : : candidate” and as many as
Parajuli et al. [60] (canine)* 1 3 2 1 2 2 PoC
Omar etal. [61] 1 3 2 3 2 2 PoC [13 ”
L : 2 : : e 61% a “proof of concept
Xue et al. [27] 2 2 1 3 1 2 PoC
Qin et al. [47]* 2 1 2 2 1 2 PoC

g;l‘;jel;:aﬁ?ii:i‘u]tiuns RC Statu S .

2 3 2 3 2 2
Gao et al. [66] 2 3 1 3 2 2 RC
Gao and Noble [67] 2 1 2 3 2 2 PoC
Huang et al. [62] 1 2 2 3 2 1 PoC
Patra and Noble [69] 1 1 2 3 1 2 PoC
Oksuz et al. [70] 2 2 2 3 2 2 RC
Guo etal. [71] (CMR)* & ' 1 1 2 2 PoC
Guo etal. [71] (CT)* 1 / 1 | 2 2 PoC

Lara Hernandez KA, Rienmliller TM, Baumgartner D, Baumgartner C. Deep learning in spatiotemporal cardiac imaging: A review of
methodologies and clinical usability. Comp Biol Med. 2021, 130, 104200. https://doi.org/10.1016/j.compbiomed.2020.104200

Lara-Hernandez A, Rienmdller T, Juarez |, Pérez M, Reyna F, Baumgartner D, Makarenko VN, Bockeria OL, Maksudov M,
Rienmdller R, Baumgartner C. Deep Learning-Based Image Registration in Dynamic Myocardial Perfusion CT Imaging. IEEE Trans
Med Imag. 2023, 42(3), 684-696. https://doi.org/10.1109/TMI.2022.3214380
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Medical device: Any instrument,

apparatus, implement, machine, appliance,

implant, reagent for in vitro use, software,
material, or other similar or related article
intended to be used, alone or in
combination, in human beings for one or
more medical purposes.?

Software as a medical device
(SaMD): Software intended to be
used for one or more medical
purposes that perform these
purposes without being part of a
hardware medical device.

Artificial intelligence (Al) as a medical
device (AlaMD): A medical device that

uses machine learning (ML), in part or in
whole, to achieve its intended medical
purpose.

Artificial Intelligence and Machine Learning in
Medical Devices & Software as a Medical Device

Medical devices including
software require regulatory
approval to market in the
EU and before they can be
used on patients.

EU: Medical Device
Regulation (MDR)

US: FDA Medical Device
Approval (510k, PMA, de-
novo)

Brazil: ANVISA Medical
Device Regulations
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Artificial Intelligence and Machine Learning in
Medical Devices & Software as a Medical Device
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Current state of regulating Al as a uUSFDA-approved Al/ML-enabled devices' as of 2023

Medical DeVice (MD) Al/ML enabled devices submitted to FDA by

To date, there is no harmonized global R e

standard or body that specifically ———————
regulates the use of Al and ML in medical s T

devices. 11

These devices must comply with existing " emaroce m—s

medical device regulatory requirements
(safety and performance requirements ,
risk and quality management, clinical e (s
evaluation, usability, etc.). SIS b o

Y- . As of July 2023, 692 devices have been approved by the US Food and Drug
Additional requirements and approaches  agministration (USFDA:; 531 of them for radiology that are not included in chart).

1ot i None of the approved devices use generative Al, artificial general intelligence,
are added to e)_(IStlng requ”.er.ne_nts to or are powered by large language models (LLMs).
address the unique characteristics of

software/AlaMD.
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Artificial Intelligence and Machine Learning in
Medical Devices & Software as a Medical Device

Certifiability of continuous-learning Al systems in Europe/USA?

£ P mnsn
Static Al (‘locked’ software algorithms with fixed
functions): Al that has learnt and works in a learnt state TR

to Artificial Intelligence/Machine Learning (Al/ML]-

IS Ce rtlfl a ble ] Based Software as a Medical Device (SaMD)

Discussion Paper and Request for Feedback

Dynamic Al (,,non-locked* adaptive, continuous
learning algorithms’): Al that continues to learn in the
field is currently not certifiable, as the system must be
verified and validated (among other requirements, the
functionality must be validated against the intended use)".

Generative Al including LLMs: Al that generates new data, images, text, etc. is
currently not certifiable.

In connection with continuously learning Al systems, there are calls for the Predetermined Change
Control Plan (PCCP) proposed by the FDA to also be adopted in Europe as part of an anticipatory
conformity assessment.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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Digital Twins and Al in Biomedical Technology
Conclusion

Advantages

Personalized medicine: DW enable the development of personalized
treatment plans and therapies, forecasts potential health outcomes, allows for
proactive intervention and enhances disease management.

Predictive Analytics: DW can simulate different treatment scenarios,
predicting outcomes and helping to choose the most effective intervention.

Big Data Handling: Al/ML can analyze vast amounts of biomedical data
much faster than humans, identifying patterns and correlations that might be
missed otherwise.

Enhanced Diagnostic Accuracy: AlI/ML algorithms can assist in diagnosing
diseases with higher accuracy by recognizing complex patterns in medical
images, genetic data, and other diagnostic tools.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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Digital Twins and Al in Biomedical Technology
Conclusion

Challenges

Data Integration and Management:

Complexity of Data: Integrating data from diverse sources such as electronic
health records, medical imaging, wearable devices, genomic data can be
complex and require advanced data management systems.

Data Quality: Ensuring the accuracy, consistency, and completeness of the
data used to create and update digital twins is crucial and difficult to achieve.

Computational Demands:

High-Performance Computing: Simulating a digital twin in real-time requires
significant computational power, which can be costly and resource-intensive.
Scalability: Scaling the technology to handle large populations or more
complex models can be a significant technical challenge.

Combination of DT and Al:
Increased complexitiy of model construction, verification and validation.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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Digital Twins and Al in Biomedical Technology
Conclusion

Challenges

Data Quality and Bias:

Training Data: Al systems require high-quality, representative training data.
Inadequate or biased data can lead to inaccurate or unfair outcomes.
Generalization: Across diverse populations and settings is crucial & challenging.

Regulatory and Ethical Issues:

Approval Processes: Approvals from bodies like the FDA or NB (EU) for Al in
healthcare is complex and time-consuming.

Ethical Concerns: Informed consent, transparency, accountability, and the
potential for Al to exacerbate health disparities is essential.

Explainability and Trust:

Black Box Models: Many Al models (e.g. DL) operate as "black boxes," making
it difficult to understand and explain their decisions.

Trust: Building trust among healthcare providers and patients in Al-driven
decisions and requires transparent and explainable Al systems.

Institute of Health Care Engineering with European Testing Center of Medical Devices — Graz University of Technology TU
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In-silico meets in-vitro/in-vivo
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