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Digital Twins and AI in Biomedical Technology

• Selected examples at cell and patient level from our research
• Regulatory challenges to approve DW/AI in Biomedical Technology

Digital twin of a cancer cell
Functional model of the „electrophysiological system“ of a cancer cell
to simulate ion channel modulation during the cell cycle

Patient model for the prediction of the cumulative fluid balance
(CFB) in intensive care 
Phenomenological model to simulate the cumulative fluid balance in a            
dynamically changing fluid balance system of an individual patient

DL-based image registration in heart perfusion CT imaging
AI-based medical image registration in dynamic computed tomography

AI and ML in Medical Devices and Software as a MD (SaMD)
Regulatory challenges to market in the EU and worldwide

P[z]
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What are digital twins?

“Digital twins are in-silico models 
that represent the virtual counterpart 
to real physical or biological 
systems and their interactions with 
each other at different levels of 
complexity and abstraction.” 

Goal in biomedicine: Model simulations 
of biological mechanisms, taking into 
account their unique characteristics 
(genetic & metabolic associations, 
signaling pathways, physiological 
mechanisms, morphology, etc).

Functional vs. phenomenological twins?
Digital model of a biological (sub)system based 
on physical equations vs. biological phenomenon
based on measurements.

Patient model
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The first digital cell twin in cancer electrophysiology

This digital model represents the bioelectric                                
subsystem of the cell function. No representations                                   
of other cellular subsystems (genomic, proteomic                                 
associations and signaling pathways, morphology).

The alteration of the function of ion channels in the                            
plasma membrane and intracellular membranes have                             
an essential influence on cell cycle proliferation.

Selected cell line:
 Adenocarcinomic human 

alveolar basal epithelial cells
(A549 cell line)

 Widley used lung cancer cell
model
 cancer research
 drug testing

4/36

in-vivo/in-vitro in-silico



 Institute of Health Care Engineering with European Testing Center of Medical Devices – Graz University of Technology

The first digital cell twin in cancer electrophysiology

Growth

DNA synthesis

Growth and 
preparation
for mitosis

Mitosis (cell
devision)
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The first digital cell twin in cancer electrophysiology
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G0 phase

 Rhythmic oscillation of the membrane potential Vm

during cell cycle progression
 Changes in membrane potential may interfere

cell cycle progression
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The first digital cell twin in cancer electrophysiology

The whole cell ion current model of the A549 lung adenocarcinoma 
cell line

The model includes the most
relevant  functional ion channels
of the plasma membrane (K+, 
Na+, Cl- and Ca2+ and an 
intracellular calcium description
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The first digital cell twin in cancer electrophysiology

Hidden Markov-based (HMM) models = statistical models that can be
used to describe the evolution of observable events that depend on 
internal factors

Example: Kv1.1 channel

I) Consideration of the protein structure:
Activation
- voltage-dependent
Inactivation
- fast N-type and slow C-type
- voltage-dependent

II) Definition of the kinetic scheme:

S5-S6 
pore

domain

4 α subunits

β subunits

S1-S4 
voltage

sensor domain

𝑑𝑃ை

𝑑𝑡
= 𝑃େర

(𝑡). 𝑐 + 𝑃
ಿయ

(𝑡). 𝜂 − 𝑃୓(𝑡). (𝑑 + 𝜆)

Ideally each state corresponds to one protein conformation - in practice, Markov models are only
approximations to the actual channel states
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The first digital cell twin in cancer electrophysiology

Hidden Markov-based (HMM) models

III) Model parametrization and optimization
Fitting of parameters to experimental data using various measured
current curves from different voltage-step protocols simultaneously to
model the different kinetics of the channel (nummerical optimization, 
computational load!). 

Activation Deactivation
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The first digital cell twin in cancer electrophysiology
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TRAM-34

Model simulation of human intermediate potassium channel (KCa3.1) 
channel inhibition in the G1 phase leads to a strong depolarization of 
Vm (+15mV). This might suppress the transition from G1 to S phase and 
inhibit further cell cycle progression (cell cycle arrest in G1 phase).

Membrane potential Vm
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Summary

 From single ion channel to the whole cell models
 Important starting point in computational cancer electrophysiology
 Fundamental basis for advanced models supporting cancer research

c

c

c

[1] Langthaler S, Zumpf C, Rienmüller R, Fuchs J, Zhou R, Shrestha N, Pelzmann B, Zorn-Pauly K, Fröhlich E, Weinberg S, Baumgartner C. The bioelectric
mechanisms of local calcium dynamics in cancer cell proliferation: An extension of the A549 in-silico cell model. Front Mol Biosci. 2024, 11, 1394398 
[2] Langthaler S, Rienmüller T, Scheruebel S, Pelzmann B, Shrestha N, Zorn-Pauly K, Schreibmayer W, Koff A, Baumgartner C. A549 In-silico 1.0: A first
computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Comput Biol. 2021, 17(6), e1009091
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System theory-based patient model for predicting the  
cumulative fluid balance in intensive care patients 

Since fluid balance is influenced by a complex interplay of patient-, operation-
and ICU-specific factors, the prediction of fluid balance is difficult and often 
inaccurate. 

A patient-individual model may enable the estimation of cumulative fluid 
balance progression in a dynamically changing patient fluid balance system by 
simulating the response to current fluid management. 

VOLUME LOAD

INSUFFICIENT EXCESSIVEOPTIMUM
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System theory-based patient model for predicting the  
cumulative fluid balance in intensive care patients 
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System theory-based patient model for predicting the  
cumulative fluid balance in intensive care patients 

Phenomenological model: 
The cumulative fluid balance

(CFB) is estimated as cumulative
fluid intake (CFI) minus cumulative

losses (CFL) over ICU stay.

CFB = CFI - CFL

Possible trajectories of cumulative fluid 
balance (CFB) in postsurgical patients
during the four consecutive phases of
fluid therapy. 

Rescue (R), Optimization (O),
Stabilization (S), Evacuation (E)

CFI CFL
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System theory-based patient model for predicting the  
cumulative fluid balance in intensive care patients 

Control theory-based digital (transfer function P[z]) model

Overall approach to predicting the course of cumulative fluid balance (CFB) using
the cumulative fluid intake (CFI) as the only input parameter of the model.
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System theory-based patient model for predicting the  
cumulative fluid balance in intensive care patients 

Control theory-based digital (transfer function P[z]) model

Individual patient model with an estimation window 0-48 h after ICU 
admission (blue), which was used to determine the transfer function P[z]
with the measured CFI and calculated CFB patient data.
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System theory-based patient model for predicting the  
cumulative fluid balance in intensive care patients 

Control theory-based digital (transfer function P[z]) model

• Patient-individual models (evaluated on a dataset of n = 618 
cardiac intensive care patients).

• With an 8-h prediction time, nearly 50% of CFB predictions are 
within ±0.5 L, and 77% are still within the clinically acceptable 
range of ±1.0 L (clinically relevant).

• Model allows estimation of CFB course on a dynamically 
changing patient fluid balance system by simulating the 
response to the current fluid management regime, providing a 
useful digital tool for clinicians in daily intensive care.

Polz M, Bergmoser K, Horn M, Schörghuber M, Lozanovic Sajic J, Rienmüller T, Baumgartner C. A System Theory Based Digital Model for 
Predicting the Cumulative Fluid Balance Course in Intensive Care Patients. Front Physiol. 2023, 14, 1101966. 
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Artificial Intelligence and Machine Learning in 
Biomedical Technology

Artificial Intelligence is a machine-based system that can, for a given set of human-
defined objectives, make predictions, recommendations, or decisions influencing real or
virtual environments. Artificial intelligence systems use machine- and human-based
inputs to perceive real and virtual environments; abstract such perceptions into models
through analysis in an automated manner; and use model inference to formulate options
for information or action.

Machine Learning is a set of techniques that can be used to train AI algorithms to
improve performance at a task based on data.

Some real-world examples of artificial intelligence and machine learning
technologies include:

• An imaging system that uses algorithms to give diagnostic information
for skin cancer in patients.

• A smart sensor device that estimates the probability of a heart attack.

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-
software-medical-device
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Artificial Intelligence and Machine Learning in 
Biomedical Technology

How Are Artificial Intelligence and Machine Learning (AI/ML) 
Transforming Medical Devices?

“AI/ML technologies have the potential to transform health care by
deriving new and important insights from the vast amount of data
generated during the delivery of health care every day.

Medical device manufacturers are using these technologies to innovate
their products to better assist health care providers and improve
patient care. One of the greatest benefits of AI/ML in software
resides in its ability to learn from real-world use and experience, and its
capability to improve its performance“.

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-
software-medical-device
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Deep learning based image registration in 
dynamic heart perfusion CT imaging

Medical image registration seeks to find an optimal spatial
transformation that best aligns the underlying anatomical structures

Relevant for (patho)physiological interpretation of the heart function
such as the heart perfusion

CT scanner, Siemens
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Deep learning based image registration in 
dynamic heart perfusion CT imaging

ECG-gated cardiac CT sequences and corresponding time-attenuation curves
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Deep learning based image registration in 
dynamic heart perfusion CT imaging

Challenges

• Correct misalignment caused by cardiac 
stressing, respiration and patient motion

• Lower contrast resolution and less 
accurate anatomical landmarks

• CT values must remain unaffected

• Shorter processing time

• Tested in a clinical example

Example myocardial perfusion CT
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Registration Network

S. Zhao, Y. Dong, E. I.-C. Chang, and Y. Xu, “Recursive Cascaded Networks for Unsupervised Medical Image Registration,” 2019 IEEE/CVF 
International Conference on Computer Vision (ICCV), pp. 10599–10609, Oct. 2019, doi: 10.1109/ICCV.2019.01070.

Recursive cascade registration network
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=

The warped image Iw is the composition of the flow field k and the moving image Im (k−1).
The final warped image Iw is obtained by successively warping the moving image Im  along all cascades.
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Loss Functions

Quantify the extent of error
between predicted and actual images

(1)

(2)
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𝐿௦௜௠ ...  Similarity Loss to penalize the difference in appearance between the fixed and warped image

𝐿௖௢௡௧ ...Contrast Concentration Loss to guide the deformation of the warped image by penalizing
the alteration of contrast between the moving and the warped image

𝐿௩௘௡௧ ...Ventricle Loss to measure and optimize the alignment of the right and left ventricle between the
fixed and the warped image

𝐿௥௘௚ ... Regularization Loss to encourage the continuity of the flow field
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Dataset and Experiments

Dataset:
From dynamic CT myocardial perfusion study (NTC 02361996)
• 118  subjects with known or suspected coronary artery disease
• Total of 944 2D sequences (30 – 40 frames)
• Data split on subject-level: 80% training and 20% validation

Experiments:
• Implemented models using 3, 5, 7, 10 cascades
• Loss functions:  LCV, LC, LNC

• Compared to two iterative registration methods Wollny et al. [2] and 
Janssens et al. [3]

• Qualitative and quantitative evaluation

[1] . Zhao, Y. Dong, E. I.-C. Chang, and Y. Xu, “Recursive Cascaded Networks for Unsupervised Medical Image Registration,” 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 10599–10609, Oct. 2019, doi: 10.1109/ICCV.2019.01070.
[2]G. Wollny, M. J. Ledesma-Carbayo, P. Kellman, and A. Santos, “Exploiting Quasiperiodicity in Motion Correction of Free-Breathing Myocardial Perfusion MRI,” IEEE 
Trans. Med. Imaging, vol. 29, no. 8, pp. 1516–1527, Aug. 2010, doi: 10.1109/TMI.2010.2049270.
[3] G. Janssens, L. Jacques, J. Orban de Xivry, X. Geets, and B. Macq, “Diffeomorphic Registration of Images with Variable Contrast Enhancement,” International Journal of 
Biomedical Imaging, vol. 2011, pp. 1–16, 2011, doi: 10.1155/2011/891585.
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LCV LC
LNC
[28]

Wollny et al.
[22]

Janssens et al.
[27]

Sequence Registration Results

Results sequence registration 

Color red and blue: large and small displacements*Reference contour of fixed image

Flow fields
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Sequence Registration Results

Methods
DSc HD MI SSIM Running Time (s)

CPU GPU

LCV
0.998 

(0.002)
3.37 

(1.63)
1.52 

(0.139)
0.881 

(0.056)

10.8 
(2.1)

0.92 
(0.18)

LC
0.997 

(0.002)
3.62 

(1.60)
1.46 

(0.138)
0.857 

(0.055)
10.8 
(2.1)

0.91 
(0.18)

LNC
0.997 

(0.003)
3.63 

(1.61)
1.17 

(0.177)
0.745 

(0.095)
10.8 
(2.1)

0.92 
(0.17)

Wollny et 
al. 

0.993 
(0.009)

4.07 
(1.71)

1.23 
(0.167)

0.736 
(0.096)

543 
(5.9)

-

Janssens
et al. 

0.995 
(0.007)

6.49 
(2.71)

1.02 
(0.194)

0.673 
(0.071)

13800 
(1405)

-

Run time is measured and
averaged over 245 2D
cardiac sequences

Spatial alignment Image quality
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Clinical Example & Summary

(a) CT values time curves obtained from a ROI in the LV cavity (input function u(t))
(b) Fermi-function for deconvolution (c) measured and estimated CT values-time curves in the segmented LV myocardial wall (output function y(t)).
(d) difference in HU values over time for the unregistered images (misalignment of the myocardium over the sequence).
(e) difference in HU values over time for the registered images (aligned LV myocardium after LCV registration).
(f) calculated regional myocardial perfusion in ml/100g/min for the apical (yellow), septal (orange) and lateral wall region (red).
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• First deformable deep 
learning-based image 
registration method for 
cardiac CT perfusion 
imaging.

• Introduced a novel loss 
function that accounts for 
local contrast changes over 
time and maintains HU 
(quantitative gray) values.

• Higher registration 
performance and shorter 
computational time (sec)
compared to established 
methods (hours).

• Excellent clinical usability.

Patient with minor coronary artery disease
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Clinical Usability of AI/ML-based Methods?

Lara Hernandez KA, Rienmüller TM, Baumgartner D, Baumgartner C. Deep learning in spatiotemporal cardiac imaging: A review of
methodologies and clinical usability. Comp Biol Med. 2021, 130, 104200. https://doi.org/10.1016/j.compbiomed.2020.104200

Lara-Hernandez A, Rienmüller T, Juárez I, Pérez M, Reyna F, Baumgartner D, Makarenko VN, Bockeria OL, Maksudov M, 
Rienmüller R, Baumgartner C. Deep Learning-Based Image Registration in Dynamic Myocardial Perfusion CT Imaging. IEEE Trans 
Med Imag. 2023, 42(3), 684-696. https://doi.org/10.1109/TMI.2022.3214380
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Not a single one of the
reviewed papers was 
classified as a “clinical level” 
study. 

Almost 39% of the articles
achieved a “robust 
candidate” and as many as
61% a “proof of concept” 
status.
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Artificial Intelligence and Machine Learning in 
Medical Devices & Software as a Medical Device

Medical devices including
software require regulatory
approval to market in the
EU and before they can be
used on patients.

EU: Medical Device 
Regulation (MDR)

US: FDA Medical Device 
Approval (510k, PMA, de-
novo)

Brazil: ANVISA Medical 
Device Regulations
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Artificial Intelligence and Machine Learning in 
Medical Devices & Software as a Medical Device

Current state of regulating AI as a 
Medical Device (MD)

To date, there is no harmonized global 
standard or body that specifically
regulates the use of AI and ML in medical
devices. 

These devices must comply with existing
medical device regulatory requirements
(safety and performance requirements , 
risk and quality management, clinical
evaluation, usability, etc.).

Additional requirements and approaches
are added to existing requirements to
address the unique characteristics of
software/AIaMD.

31/36



 Institute of Health Care Engineering with European Testing Center of Medical Devices – Graz University of Technology

Artificial Intelligence and Machine Learning in 
Medical Devices & Software as a Medical Device

Certifiability of continuous-learning AI systems in Europe/USA? 

Static AI (‘locked’ software algorithms with fixed
functions): AI that has learnt and works in a learnt state
is certifiable. 

Dynamic AI („non-locked“ adaptive, continuous
learning algorithms’): AI that continues to learn in the
field is currently not certifiable, as the system must be
verified and validated (among other requirements, the
functionality must be validated against the intended use)". 

Generative AI including LLMs: AI that generates new data, images, text, etc. is
currently not certifiable.

In connection with continuously learning AI systems, there are calls for the Predetermined Change 
Control Plan (PCCP) proposed by the FDA to also be adopted in Europe as part of an anticipatory
conformity assessment. 

32/36



 Institute of Health Care Engineering with European Testing Center of Medical Devices – Graz University of Technology

Digital Twins and AI in Biomedical Technology 
Conclusion
Advantages

Personalized medicine: DW enable the development of personalized
treatment plans and therapies, forecasts potential health outcomes, allows for
proactive intervention and enhances disease management.

Predictive Analytics: DW can simulate different treatment scenarios, 
predicting outcomes and helping to choose the most effective intervention.

Big Data Handling: AI/ML can analyze vast amounts of biomedical data
much faster than humans, identifying patterns and correlations that might be
missed otherwise.

Enhanced Diagnostic Accuracy: AI/ML algorithms can assist in diagnosing
diseases with higher accuracy by recognizing complex patterns in medical
images, genetic data, and other diagnostic tools.
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Digital Twins and AI in Biomedical Technology 
Conclusion
Challenges 

Data Integration and Management:
Complexity of Data: Integrating data from diverse sources such as electronic 
health records, medical imaging, wearable devices, genomic data can be
complex and require advanced data management systems.
Data Quality: Ensuring the accuracy, consistency, and completeness of the
data used to create and update digital twins is crucial and difficult to achieve.

Computational Demands:
High-Performance Computing: Simulating a digital twin in real-time requires
significant computational power, which can be costly and resource-intensive.
Scalability: Scaling the technology to handle large populations or more
complex models can be a significant technical challenge.

Combination of DT and AI: 
Increased complexitiy of model construction, verification and validation.
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Digital Twins and AI in Biomedical Technology 
Conclusion
Challenges 

Data Quality and Bias:
Training Data: AI systems require high-quality, representative training data. 
Inadequate or biased data can lead to inaccurate or unfair outcomes.
Generalization: Across diverse populations and settings is crucial & challenging.

Regulatory and Ethical Issues:
Approval Processes: Approvals from bodies like the FDA or NB (EU) for AI in 
healthcare is complex and time-consuming.
Ethical Concerns: Informed consent, transparency, accountability, and the
potential for AI to exacerbate health disparities is essential.

Explainability and Trust:
Black Box Models: Many AI models (e.g. DL) operate as "black boxes," making
it difficult to understand and explain their decisions.
Trust: Building trust among healthcare providers and patients in AI-driven
decisions and requires transparent and explainable AI systems.
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Rui Zhou

Niroj Shrestha

Thank you !
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